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Statistical Tests for Detection of Misspecified Relationships by Use of
Genome-Screen Data
Mary Sara McPeek and Lei Sun
Department of Statistics, University of Chicago, Chicago

Misspecified relationships can have serious consequences for linkage studies, resulting in either reduced power or
false-positive evidence for linkage. If some individuals in the pedigree are untyped, then Mendelian errors may not
be observed. Previous approaches to detection of misspecified relationships by use of genotype data were developed
for sib and half-sib pairs. We extend the likelihood calculations of Göring and Ott and Boehnke and Cox to more-
general relative pairs, for which identity-by-descent (IBD) status is no longer a Markov chain, and we propose a
likelihood-ratio test. We also extend the identity-by-state (IBS)–based test of Ehm and Wagner to nonsib relative
pairs. The likelihood-ratio test has high power, but its drawbacks include the need to construct and apply a separate
Markov chain for each possible alternative relationship and the need for simulation to assess significance. The IBS-
based test is simpler but has lower power. We propose two new test statistics—conditional expected IBD (EIBD)
and adjusted IBS (AIBS)—designed to retain the simplicity of IBS while increasing power by taking into account
chance sharing. In simulations, the power of EIBD is generally close to that of the likelihood-ratio test. The power
of AIBS is higher than that of IBS, in all cases considered. We suggest a strategy of initial screening by use of EIBD
and AIBS, followed by application of the likelihood-ratio test to only a subset of relative pairs, identified by use
of EIBD and AIBS. We apply the methods to a Genetic Analysis Workshop 11 data set from the Collaborative
Study on the Genetics of Alcoholism.

Introduction

Pedigree error, or misclassification of the relationship
between individuals, can have potentially serious con-
sequences for linkage studies. It can lead to false positive
evidence for linkage or reduce the power of linkage de-
tection. In some cases, misspecified relationships can be
identified through discovery of Mendelian errors. How-
ever, if some individuals in the pedigree are untyped,
then Mendelian errors may not result, so other methods
are needed to test for deviation from the reported re-
lationship. Genome-screen data collected for mapping
studies have the potential to be highly informative for
verifying relationships among individuals.

Statistical methods for detecting misspecified rela-
tionships based on genotype data have been developed
specifically for the cases of sib pairs and half-sib pairs.
Göring and Ott (1997) and Boehnke and Cox (1997)
compute the likelihood of the observed genotype data
for the pair in these cases, under the assumption of no
interference. In the case when the sib pair has a single
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typed parent, Göring and Ott (1997) also compute the
likelihood conditional on the genotype of the parent.
For each putative sib pair, Göring and Ott (1997) assign
prior probabilities to the relationships sib, half-sib, and
unrelated, and compute the posterior probabilities of
the relationships given the data. Boehnke and Cox
(1997) use a hidden Markov model to calculate the
likelihood of the data for each of a set of possible re-
lationships for the pair, namely, sib, half-sib, unrelated,
and MZ twin, and they select the one that maximizes
the likelihood. Ehm and Wagner (1998) propose an ap-
proximately normally distributed test statistic based on
the number of alleles shared identical by state (IBS) by
a sib pair, summed over a large number of genetic
markers.

We consider the problem of relationship testing for
more general relative pairs. We extend both the IBS-
based test of Ehm and Wagner (1998) and the likelihood
calculation of Göring and Ott (1997) and Boehnke and
Cox (1997) to more general outbred relative pairs. In
their likelihood calculations, both Göring and Ott
(1997) and Boehnke and Cox (1997) assume that the
identity-by-descent (IBD) process for a relative pair is
Markov. However, as noted by Donnelly (1983) and
Feingold (1993), the Markov assumption fails to hold
for all but the simplest relative pairs. For instance, it
does not hold for avuncular and first-cousin relation-
ships, even under the assumption of no interference (see
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Figure 1 A, Pedigree for avuncular pair. B, Pedigree for first-
cousin pair.

both the IBD Process for a Pair of Relatives Often Non-
Markov subsection, in the Methods section, and Ap-
pendix A). Donnelly (1983) showed how to construct
an augmented IBD process that is Markov under no
interference. We apply a hidden Markov method to the
augmented IBD process to calculate the likelihood. In
Appendix B, we describe an extension allowing for in-
terference. In Appendix C, we describe an extension to
inbred relative pairs. Using the above likelihood cal-
culation, we propose a likelihood-ratio test for misspe-
cified relationships. In addition, we propose two new
test statistics that do not require specification of an al-
ternative relationship, yet do take into account chance
sharing, thus combining some of the strong points of
both the IBS and likelihood-ratio tests.

Methods

IBD Process for a Pair of Relatives Often Non-Markov

A set of alleles is said to be IBD if the alleles are copies
inherited from the same ancestral allele. IBD is to be
distinguished from IBS; a set of alleles being IBS simply
means that the set of alleles is of the same observed allelic
type. A set of alleles being IBD implies that they are IBS
(ignoring the possibilities of genotyping error and mu-
tation), but not vice versa.

Define the IBD process {D} for a pair of outbred rel-
atives, call them individuals 1 and 2, by letting Dm equal
the number of alleles shared IBD by the pair at marker
m,

D = 1 � 1 � 1 � 1 ,m g {g g {g g {g g {g11 21 11 22 12 21 12 22

where is the indicator of the event that allele i of1g {g1i 2j

individual 1 and allele j of individual 2 at marker m are
IBD, with arbitrary labeling of the two alleles of an
individual. For outbred relative pairs, Dm takes values
in {0, 1, 2} for each m. In order to calculate the likelihood
in the cases of sib pairs and half-sib pairs, Göring and
Ott (1997) and Boehnke and Cox (1997) make the as-
sumption that the IBD process {D} is Markov. First, this
assumption does not hold in the presence of interference,
so these works make an implicit assumption of no in-
terference. Second, although the Markov assumption
holds, under the assumption of no interference, in the
cases of full sibs, half-sibs, parent-child, and grandpar-
ent-grandchild (hereafter denoted as “grand-PC”), it
does not hold for general relationships even if no inter-
ference is assumed. In particular, it fails in the cases of
avuncular and first-cousin relationships (Donnelly 1983;
Feingold 1993).

To understand why this is so, first consider the avun-
cular case. Let the individuals be labeled 1-6 as in fig.
1A, with individuals 3 and 6 forming an avuncular pair.

The Markov property requires that conditional on the
IBD value DA for the avuncular pair at a locus A, the
IBD values at loci to the right of locus A are independent
of the IBD values at loci to the left of locus A. The
violation of the Markov property in the avuncular case
arises as follows: conditional on the number of alleles
shared IBD by individuals 3 and 6 at locus A, if the A
allele not transmitted from individual 4 to individual 6
is shared IBD by individuals 3 and 4 (call this event SA),
then the chance is increased that individuals 3 and 6
share an allele IBD at any other locus linked to A. This
induces a positive correlation in sharing at loci linked
to A, conditional on IBD sharing at A (see Appendix
A). By conditioning on the event SA or its complement,
we show in Appendix A that if locus B is to the right
of locus A and locus C is to the left of locus A, both
linked to A, then for the avuncular pair 3 and 6,

P(D = 1FD = j, D = 1) 1 P(D = 1FD = j) , (1)C A B C A

violating the Markov property.
The first-cousin case is shown in figure 1B. Let DA be

the number of alleles shared IBD by the cousin pair 5
and 6 at locus A, let IA be the indicator of the event that
the cousins’ paternally inherited alleles at A came from
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Table 1

State Spaces of Augmented Markov Chains for Avuncular and
First-Cousin Pairs

STATE LABEL

VALUE THAT DEFINES STATEa

IBD(A3,A4) IBD(A3,A6)

A. Avuncular chain:
AV1 0 0
AV2 1 0
AV3 1 1
AV4 2 1

IBD(B3,B4) IBD(B5,B6) G(B5,B6)

B. First-cousin chain:
FC1 0 0 0
FC2 0 0 1
FC3 1 0 0
FC4 1 0 1
FC5 1 1 1
FC6 2 0 0
FC7 2 1 1

a “IBD(Xi,Xj)” is the number of allels shared IBD by individuals
i and j, where individuals are as labeled in figure 1X, where “X”
denotes the figure panel (A or B); “G(B5,B6)” is the indicator of
event that allele inherited by individual 5 from individual 3 and
the allele inherited by individual 6 from individual 4 are both
descended from either individual 1 or individual 2—that is, that
they are both from the same grandparent. Individuals are labeled
as in figure 1B).

the same grandparent, and let be the number of alleles′DA

shared IBD by individuals 3 and 4. Conditional on DA,
either holding fixed and increasing IA or holding IA

′DA

fixed and increasing increases the chance that the′DA

cousin pair shares one IBD at any locus linked to A. As
in the avuncular case, this induces a positive correlation
in sharing at loci linked to A, conditional on the number
of alleles shared IBD at A, resulting in a similar violation
of the Markov property.

Likelihood Calculation for an Outbred Relative Pair
Under No Interference

Let {D} be the IBD process for a pair of outbred rel-
atives. To extend the likelihood calculation of Göring
and Ott (1997) and Boehnke and Cox (1997) to the case
when {D} is no longer Markov, we construct an aug-
mented IBD process {A} that is Markov under the as-
sumption of no interference and that contains all the
information of the process {D}. For the avuncular and
first-cousin cases, we give the state spaces for such aug-
mented IBD Markov processes {A} in, respectively, table
1A and B, with transition matrices given in table 2A and
B, and with the probability distributions of the next state
entered, conditional on the current state, and the leaving
rate for each state given in table 3A and B. Note that
in general, under no interference, the augmented Mar-
kov process could be chosen to be {A�}, where is the′Am

inheritance vector at marker m defined by Lander and
Green (1987), or , used by Feingold (1993) in the′′{A }
avuncular and first-cousin cases, where is the equiv-′′Am

alence class of inheritance vectors at m obtained by iden-
tifying inheritance vectors that differ only by inter-
changes of maternal and paternal haplotypes within
founders (Kruglyak et al. 1996). The use of {A�} or {A�}
provides an automatic way to construct the augmented
Markov chain, although these processes contain unnec-
essary information. For instance, in the avuncular case,
the state space of the process {A�} is of size 64, and that
for {A�} is of size 8, whereas our augmented process {A}
requires only 4 states. Similarly, in the first-cousin case,
the state space of the process {A�} is of size 256, that
for {A�} is of size 16, and that for our augmented process
{A} is 7. In both cases, our augmented chain {A} has the
minimal number of states needed to both contain all the
information of the IBD process {D} and satisfy the Mar-
kov property under no interference. Donnelly (1983)
constructs similar minimal-state augmented chains for a
number of relationships such as “mth generation de-
scendant” and “sth cousin t times removed.” The prob-
lem of implementing an automated method for gener-
ating a minimal-state augmented Markov chain for any
given pairwise relationship is still an open one.

In the cases of full sibs and half-sibs, for which the
IBD process {D} is Markov under no interference,

Boehnke and Cox (1997) use a hidden Markov method
to calculate the probability , where ncP (G , G , ) G )R 1 2 nc

is the number of markers on the cth chromosome, Gm

is the genotype data for the pair at marker m, and the
subscript R denotes calculation of the probability under
the assumed relationship R. When the IBD status of a
pair is not Markov, the likelihood can still be calculated
by use of a hidden Markov method, applying the al-
gorithm of Baum (1972). However the hidden Markov
method is applied to the augmented Markov chain {A}
instead of to the IBD process {D}. The calculation, using
Baum’s (1972) forward probabilities, is summarized as
follows: for any given relationship R, we define a (j) =1

and , forP (A = j) a (j) = P (G , G , ) ,G , A = j)R 1 k R 1 2 k�1 k

. Note that is just the stationary distributionk 1 1 a (j)1

of the augmented Markov chain {A} for relationship R.
The stationary distribution for our augmented avuncular
Markov chain is , and the stationary1p = p = p = p =1 2 3 4 4

distribution for our augmented first-cousin Markov
chain is , . Then the1 1p = p = p = p = p = p = p =1 2 4 5 6 7 38 4

recursion formula, similar to that in Boehnke and Cox
(1997), is ,a (j) = � a (i)P (A = jFA = i)P(G FA = i)k�1 i k R k�1 k k k

where is the transition probability ofP (A = jFA = i)R k�1 k

the augmented Markov chain, which, for the cases of
avuncular and first-cousin pairs, is given in, respectively,
table 2A and B. Since the augmented Markov chain {A}
contains all the information of the IBD process {D}, and
IBD status is sufficient to calculate the conditional prob-
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Table 2

Transition Matrices of Augmented Markov Chains for Avuncular and First-Cousin Pairs, Where and2 2w = v + (1 5 v) f = 1 5
w = 2v(1 5 v)

CURRENT STATE

STATE AT RECOMBINATION FRACTION v FROM CURRENT STATE

AV1 AV2 AV3 AV4

A. Avuncular chain:a

AV1 w2 wf wf f2

AV2 wf (1 � v)w2 � vf 2 vw2 � (1 � v)f 2 wf

AV3 wf vw2 � (1 � v)f 2 (1 � v)w2 � vf 2 wf

AV4 f2 wf wf w2

FC1 FC2 FC3 FC4 FC5 FC6 FC7

B. First cousin:b

FC1 w3 w2f 2w2f wf2 wf2 wf2 f3

FC2 w2f w3 2wf2 w2f w2f f3 wf2

FC3 w2f wf2 w3 � wf2 v(1 � v)(w2 � f 2) v(1 � v)(w2 � f 2) w2f wf2

FC4 wf2 w2f w2f � f3 (1 � v)2w2 � v 2f2 v2w2 � (1 � v) 2f2 wf2 w2f

FC5 wf2 w2f w2f � f3 v2w2 � (1 � v) 2f2 (1 � v)2w2 � v 2f2 wf2 w2f

FC6 wf2 f3 2w2f wf2 wf2 w3 w2f

FC7 f3 wf2 2wf2 w2f w2f w2f w3

a States are as labeled in table 1A.
b States are as labeled in table 1B.

ability of genotype data, we obtain P(G FA = i) =k k

status associated with state i of A), whereP(G FD = IBDk k

the IBD status associated with state i of A is given in
table 1A and B, for the cases of avuncular and first-
cousin pairs, respectively. Thus, for the outbred case,
computation of the probabilities can be re-P(G FA = i)k k

duced to computation of the probabilities P(G FD = j)k k

that appear in Thompson (1975). The summation
gives for the cth chromo-� a (j) P (G , G , ) , G )j n R 1 2 nc c

some, and the are multiplied over allP (G , G , ) , G )R 1 2 nc

chromosomes c to complete calculation of the likelihood
of the genotype data throughout the genome.

In Appendix B, we discuss an extension of the like-
lihood calculation to take into account interference, us-
ing the chi-square model. In Appendix C, we discuss
extension to the case of an inbred relative pair.

Likelihood-Ratio Test (LRT) and Maximized Likelihood-
Ratio test (MLRT)

In order to test the null relationship against a specific
alternative relationship, we calculate the likelihoods LO

and LA for the data under the null and alternative re-
lationships, respectively, using the above method. The
test statistic for the likelihood-ratio test (LRT) is the log-
likelihood ratio . We assess sig-LLR = log (L ) � log (L )A O

nificance by simulation under the null hypothesis. In our
simulations, we find that in fact the normal distribution
provides a very close approximation to the distribution
of LLR under the null (or alternative) relationship when
genome-screen data are used. However, the null mean
and variance of LLR would still need to be obtained by

simulation in order to use the normal approximation for
assessing significance.

In practice, one often does not have a specific alter-
native relationship in mind. In that case, one can max-
imize the likelihood over a set of alternatives to obtainA

, and then consider the maximized log-likelihood ra-L̂A

tio , where this statistic de-ˆMLLR = log (L ) � log (L )A O

pends on the particular set of alternatives considered.A
In our data analysis and simulations, typically consistsA
of sib, half-sib, grand-PC, avuncular, unrelated and first-
cousin relationships (excluding the null relationship).
Unlike LLR, MLLR often has a rather skewed distri-
bution, so the normal approximation is not appropriate.
Thus we require simulation to assess significance for the
test by calculation of empirical p values. Note that one
may detect a misspecified relationship by use of the max-
imum likelihood-ratio test (MLRT), although the true
alternative relationship may not be in the class . ForA
a data set in which thousands of pairwise relationships
are examined, use of a large alternative class may notA
be computationally feasible. Judicious choice of mayA
give power against a wide range of alternatives, includ-
ing many not in . If significant deviation from the nullA
is detected in a few cases, a larger class may be con-A
sidered for relationship estimation in those cases.

Markov Approximation to LRT and MLRT

One strategy, which would eliminate the need to con-
struct augmented Markov chains for a wide variety of
relationships, and which would reduce the computa-
tional burden of the MLRT or LRT, would be to ap-
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Table 3

Probability Distributions for Next State Entered, Conditional on Current State, with Leaving
Rates (in Terms of Genetic Distance)

CURRENT STATE

PROBABILITY THAT NEXT STATE ENTERED IS
LEAVING

RATEAV1 AV2 AV3 AV4

Avuncular chain of table 2A:
AV1 0 1/2 1/2 0 4
AV2 2/5 0 1/5 2/5 5
AV3 2/5 1/5 0 2/5 5
AV4 0 1/2 1/2 0 4

FC1 FC2 FC3 FC4 FC5 FC6 FC7

First-cousin chain of table 2B:
FC1 0 1/3 2/3 0 0 0 0 6
FC2 1/3 0 0 1/3 1/3 0 0 6
FC3 1/3 0 0 1/6 1/6 1/3 0 6
FC4 0 1/3 1/3 0 0 0 1/3 6
FC5 0 1/3 1/3 0 0 0 1/3 6
FC6 0 0 2/3 0 0 0 1/3 6
FC7 0 0 0 1/3 1/3 1/3 0 6

proximate the IBD process {D} by a Markov process {B},
with the correct conditional probabilities P(D =m2

used as transition probabilities for {B}, wherejFD = i)m1

m1 and m2 label adjacent markers; that is, {B} is a Mar-
kov chain on the set of markers, with P(B = i) =m1

for all markers m1, andP(D = i) P(B = jFB = i) =m1 m2 m1

for all pairs of adjacent markers m1P(D = jFD = i)m2 m1

and m2. We approximate the likelihood of the data by
letting {B} represent the IBD process; that is, we treat
the IBD process as Markov, although it is not. The like-
lihood for the data would then be calculated with {B}
as the hidden Markov chain, as in Boehnke and Cox
(1997). Algorithms for calculation of P(D = jFD = i)m2 m1

for outbred relationships are discussed by Denniston
(1975), Thompson (1988), and Tiwari and Elston
(1999). Explicit formulae are given by Bishop and Wil-
liamson (1990) for the relationships sib, half-sib, parent-
child, grand-PC, avuncular, and first cousin. In our data
analysis and simulation, we use the correct likelihood,
not the approximation. However, we also compare the
correct and approximate likelihoods for the avuncular
and first-cousin cases in the Results section.

Test Based on IBS

Ehm and Wagner (1998) propose an approximately
normally distributed test statistic, which we call S�, based
on half the number of alleles shared IBS summed up
over a large number of markers: , where Sm

′S = S S /2m m

is the number of alleles shared IBS by the pair at locus
m. Letting (g11, g12) and (g21, g22) be the genotypes of
individuals 1 and 2 at locus m, and letting denoteg ≈ g1i 2j

the event that allele i of individual 1 and allele j of
individual 2 at locus m are IBS, then Sm is defined as
follows:

S = 2 if and only if (g ≈ g and g ≈ g )m 11 21 12 22

or (g ≈ g and g ≈ g ) ;11 22 12 21

S = 0 if and only if g Xg and g Xgm 11 21 11 22

and g Xg and g Xg ;12 21 12 22

S = 1 otherwise .m

In the case of sib pair, Ehm and Wagner (1998) describe
the calculation of the mean and variance of S� and apply
the normal approximation to assess significance. Note
that Ehm and Wagner (1998) consider a one-sided hy-
pothesis test, whereas all of our hypotheses are two
sided. A two-sided test is appropriate even for the case
in which the null relationship is sib pair, because excess
sharing over the null could indicate that the sib pair is
inbred.

For more general relative pairs, we consider the sta-
tistic , where n is the total number of mark-1 nS = S Sm=1 mn

ers. We verify by simulation that the normal approxi-
mation works well for assessing significance when data
are from a genome screen. For each relationship ex-
amined, the null mean and variance, andE (S)O

, are needed in order to apply the normal ap-Var (S)O

proximation. Let be the allele frequencies atf , f , ) , f1 2 l

marker m. Then in addition to the null IBD probabilities
, , 1, 2, the calculation of andp = P (D = i) i = 0 E (S)i O m O

requires the following probabilities, valid forVar (S)O

outbred pairs:
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P(S = 2FD = 2) = 1 ,m m

2P(S = 2FD = 1) = f ,�m m i i

2P(S = 1FD = 1) = 1 � f ,�m m i i

4 2 2P(S = 2FD = 0) = f � 2 f f ,� � �m m i i i j(i i j

3P(S = 1FD = 0) = 4 f f� �m m i j(i i j

2�4 f f f ,� � �i j(i k(i, j i j k

P(S , S FD = i, D = j)m1 m2 m1 m2

= P(S FD = i)P(S FD = j) ,m1 m1 m2 m2

for . Finally, the null probabilitiesm1 ( m2 P (D =O m2

for are also required, andi2FD = i1) i1, i2 � {0, 1, 2}m1

are given in table 1 of Bishop and Williamson (1990)
for the relationships sib, half-sib, parent-child, grand-
PC, avuncular, and first cousin. More generally, they can
be determined from the augmented Markov chain {A},
if it is known, or, in some cases, by the algorithms of
Denniston (1975), Thompson (1988), and Tiwari and
Elston (1999). Then we have

n 2 21
E (S) = jp P{S = jFD = i}� � �O i m mn m=1 i=0 j=0

and

n n 2 2 2 21
Var (S) = � � � � � �O 2[n m1=1 m2=1 i1=0 i2=0 j =0 j =01 2

j j p P {D = i2FD = i1}1 2 i1 O m2 m1

#P{S = j FD = i1}m1 1 m1

I{m1(m2} 2#(P{S = j FD = i2}) �E (S) ,]m2 2 m2 O

where is the indicator of the eventI{m1 ( m2}
.{m1 ( m2}

Test Based on Conditional Expected IBD (EIBD)

Although the MLRT has high power, its drawbacks
include the need to construct augmented Markov chains
for the null and for each alternative relationship, the
need to implement a separate hidden Markov chain cal-
culation for each possible alternative relationship, and
the need for simulation to assess significance. In principle
it should be possible to perform simulations for each
class of relatives in the data set, e.g. for avuncular pairs,
and then use the same simulations to evaluate signifi-
cance of MLLR for all avuncular pairs. However, it is
often the case that not all individuals are typed at the
same markers, so separate simulations may be needed
for each pair of individuals. Thus, the LRT or MLRT

may be very cumbersome to use as a diagnostic tool
unless the set of relationships to consider is very limited,
as in the sib pair case described in Göring and Ott (1997)
and Boehnke and Cox (1997), or the number of relative
pairs in the data is small. The IBS-based test is much
simpler computationally, but it loses power by not ex-
plicitly considering chance sharing. We propose two al-
ternative test statistics designed to retain the simplicity
of IBS, but to increase power by taking into account
chance sharing.

The first test statistic, denoted EIBD, is the average of
the conditional expected number of alleles shared IBD
at each marker, conditional on the data for that marker,
the null relationship, and the allele frequencies; that is,

, where is the number of al-1 nEIBD = S E (D FG ) Dm=1 O m m mn

leles shared IBD at marker m, is the genotype in-Gm

formation for the pair at marker m, n is the number of
markers, and the subscript O indicates that the expec-
tation is calculated under the null relationship. Note that
the expectation at a locus is taken conditional only on
the data for that locus. Letting , , 1, 2,p = P (D = i) i = 0i O

we have

2P(G FD = 2)p � P(G FD = 1)pm m 2 m m 1E (D FG ) = ,O m m � P(G FD = i)pi=0,1,2 m m i

where the probabilities are given inP(G FD = i)m m

Thompson (1975) for outbred relative pairs.
We find that the normal distribution gives a close ap-

proximation to the sampling distribution of EIBD when
applied to genome screen data. Thus, to assess signifi-
cance, one need only calculate the mean and variance
of the statistic under the null hypothesis. Note that

, theE (EIBD) = E [E (D FG )] = E (D ) = 2p � pO O O m m O m 2 1

mean number of alleles shared IBD under the null re-
lationship. The calculation of the null variance is very
similar to that for IBS. We can think of asE (D FG )O m m

a function of Gm. Then to calculate the variance of EIBD,
we need the probabilities as in theP (D = i2FD = i1)O m2 m1

IBS case and the probabilities instead ofP(G FD = i)m m

the probabilities used in the IBS case.P(S FD = i)m m

Test Based on Adjusted IBS (AIBS)

One possible drawback of the EIBD statistic is that if
the null relationship has , then is re-p = 0 E (D FG )2 O m m

stricted to be within the range 0–1. This may give less
than optimal power if the alternative relationship has
moderate p2. To avoid this problem, we also propose an
adjusted IBS statistic, which is an average over all mark-
ers m of Am, where Am is a sum over each shared allele
of its null conditional probability of being shared IBD
given that the allele is shared IBS and under the as-
sumption that the shared alleles result from a random
draw of one allele from each of the individuals; that is,
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, where if no alleles are shared1 nAIBS = S A A = 0m=1 m mn

IBS, if one allele is shared IBSA = F / [F � (1 � F )f ]m O O O i

and it is allele i, and A = F / [F � (1 � F )f ] �m O O O i

if two alleles are shared IBS andF / [F � (1 � F )f ]O O O j

they are alleles i and j. Here FO is the kinship coefficient
under the null relationship, . If an alleleF = p /4 � p /2O 1 2

were drawn at random from each individual’s genotype
at a given locus, the quantity wouldF / [F � (1 � F )f ]O O O i

represent the probability that the two alleles are shared
IBD given that they are shared IBS for allele i, condi-
tional on the null relationship.

For AIBS, we find that the normal approximation is
quite satisfactory for assessing significance. Calculation
of the null mean and variance for AIBS is very similar
to that for IBS and EIBD. Am can be thought of as a
function of Gm, so the probabilities P(D = i2FD =m2 m1

and are used to find the null mean andi1) P(G FD = i)m m

variance, as for EIBD.

Preliminary Screening with EIBD and AIBS, Followed
by Application of MLRT

In a reasonably large data set, such as the Genetic
Analysis Workshop (GAW) 11 Committee on the Ge-
netics of Alcoholism (COGA) data set (Begleiter et al.
1999) analyzed in the Application to GAW 11 COGA
Data subsection of the Results section, there may be
thousands of relationship pairs to be tested. To use the
MLRT, one would apply a computationally demanding
calculation to each pair, with significance assessed by
simulation in which that calculation is repeated 105

times. This large number of replicates would be needed
when significance level .001 is used to reduce the number
of false positive detections when screening a large num-
ber of pairs. If not all pairs are typed on the same mark-
ers, as in the GAW 11 COGA data set, then separate
simulations would be performed for each pair, even
among those that have the same null relationship. To
make this more practical, we suggest a strategy of pre-
liminary screening using EIBD and AIBS to determine a
subset of pairs for which it is worthwhile to perform the
MLRT. We establish a somewhat arbitrary cutoff of .2
for the smaller of the two p values obtained by use of
EIBD and AIBS, in order for a relative pair to be chosen
for the MLRT. The appropriate assessment of signifi-
cance for this two-step procedure is easily obtained by
simulation, at virtually no additional cost over the sim-
ulations that are required to assess significance for
MLRT. In the Results section, we show that virtually no
power is lost by doing this instead of applying the MLRT
to all relative pairs, while the savings in computing time
is substantial.

Relationship Estimation

If the null relationship is rejected in a hypothesis test,
it is of interest to know what relationship is suggested
by the data. One strategy would be to formulate the
augmented Markov chain for each of a large number of
relationships, calculate the likelihood under each, and
compare them. However, in practice, the need to specify
and implement an augmented Markov chain for every
relationship considered would involve a substantial in-
vestment of time for each alternative considered. We
propose a simpler preliminary strategy, involving esti-
mation of , the probabilities of sharingp = (p , p , p )0 1 2

zero, one, or two alleles IBD. This simple method could
be used to suggest some likely alternative relationships,
whose likelihoods could then be compared.

We estimate by maximizing ,np � log [L(G ; p)]m=1 m

where

L(G ; p) = p P(G FD = 0)m 0 m m

�p P(G FD = 1) � p P(G FD = 2)1 m m 2 m m

is the likelihood of the genotype data at marker m in
terms of and the allele frequencies. If the markers werep
unlinked, this estimate of would be the maximum like-p
lihood estimate derived in Thompson (1975). However,
we apply this procedure here to linked markers. The
quantity can be quickly maximizedn� log [L(G ; p)]m=1 m

by a simple application of the EM algorithm. Where the
current estimate of is , we obtain the(k) (k) (k) (k)p p = [p ,p ,p ]0 1 2

updated estimate by the formula

n(k)p P(G FD = i)i m m(k�1)p = .�i (k)n L[G ; p ]m=1 m

We investigate the properties of this estimator when ap-
plied to genome screen data below.

As shown in Thompson (1986), under the assumption
of no inbreeding, the constraint must be sat-2p � 4p p1 0 2

isfied. The quantity could be maxi-n� log [L(G ; p)]m=1 m

mized subject to this constraint by first finding the max-
imizing in the unconstrained case. If the constraint isp
violated, then the condition is imposed and2p = 4p p1 0 2

a one-dimensional search algorithm is used. If the true
relationship is not known, however, one may want to
use the unconstrained estimate to allow for the possi-
bility of inbreeding.

Results

Simulation Studies

We perform simulations to compare the power of the
four test statistics, MLLR, EIBD, AIBS, and IBS, to de-
tect misspecified pairwise relationships. We also include
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in the comparison the LRT based on the correct alter-
native relationship, which sets a benchmark of close to
optimal power that is not realistically achievable in prac-
tice when the correct alternative relationship is un-
known. (Power of the LRT used here is slightly subop-
timal because of the presence of interference, but we
expect the effect to be almost negligible. See Appendix
B for the extension of the LRT to the case of interfer-
ence.) In our initial simulations, we consider the follow-
ing five relationships: sib, half-sib, grand-PC, avuncular,
and first cousin. For this set of simulations, we take the
MLLR to be the maximum of the log-likelihood over
the four possible alternative relationships from this set
(excluding the null relationship), minus the null log-like-
lihood. We simulate marker data from an autosomal
genome screen for which we vary the allele frequencies
and marker resolution. Our simulated scenarios include
panels of microsatellite markers equally spaced at re-
combination fractions of .07, .15, and .25, with sex-
averaged chromosome lengths taken from Broman et al.
(1998), and with all markers having allele frequencies
.40, .20, .20, .05, .05, .05, and .05. We also simulate
SNPs equally spaced at recombination fractions .01 and
.07, with allele frequencies .7 and .3. The allele fre-
quencies for these simulated SNP and microsatellite pan-
els were chosen so that the markers would be somewhat
less informative than the ideal, but within the range of
what might be typical. Our results show that the con-
clusions about power comparisons across the statistics
depend very little on the assumptions about the allele
frequency distributions. Our final simulated marker
panel is based on the markers actually typed in the GAW
11 COGA data set. This panel is more realistic because
marker spacings are unequal with an average intermar-
ker recombination fraction of .13, allele frequency dis-
tributions differ across markers, and some marker data
are missing. We consider the power of the hypothesis
tests at significance levels of .01 and .001. The signifi-
cance level of .01 would be appropriate for a single
hypothesis test, whereas we use the level of .001 in our
screening of 2,810 relative pairs in the COGA data set
in order to reduce the number of false positives that
would be expected to occur in screening a large number
of pairs. All simulations are performed by use of the chi-
square model for crossovers with interference (Cobbs
1978; Stam 1979; Foss et al. 1993; McPeek and Speed
1995; Zhao et al. 1995) with parameter for hu-m = 4
mans, corresponding to a gamma shape parameter of 5,
as suggested by the results of Lin and Speed (1996).
Although it is convenient to assume no interference in
the development and implementation of the testing
methods, the actual data do contain interference. Thus,
in order to give as close an indication as possible of the
performance of the methods on real data, we simulate
the data with interference. The number of replications

in each simulation is 1 million, and the five testing meth-
ods are analyzed on the same 1 million data sets in each
case, minimizing any effects of sampling variability.

Figure 2 and tables 4–7 give the results of the power
studies. In each case, we give power obtained by com-
parison of each of 1 million data sets simulated under
the alternative relationship to an empirical null distri-
bution obtained from 1 million data sets simulated under
the null relationship. This procedure leads to very ac-
curate power comparisons. However, in practice, for the
tests based on EIBD, AIBS, and IBS, the normal ap-
proximation is adequate to assess significance. This does
not hold for the MLRT, for which simulation is required
to assess significance, but 100,000 simulated realizations
may be adequate if significance level .001 is used or
10,000 simulated realizations if significance level .01 is
used. For EIBD, AIBS, and IBS, we compared the p val-
ues calculated from the normal approximation to those
calculated from the empirical null distribution and found
them to be very close (results not shown). In our sim-
ulations, we also found that the distributions of these
test statistics were approximately normal when the null
relationship was not the true relationship.

Figure 2A gives the power for testing the null of half-
sib against the alternative of first cousin at significance
level .01 and figure 2B gives the same at significance
level .001, both for microsatellite markers with fre-
quencies .40, .20, .20, .05, .05, .05, and .05. Power
results based on the GAW 11 COGA data are also
shown. From the plot it is clear that the LRT has the
highest power, followed by MLRT, EIBD, and AIBS,
with IBS having substantially lower power than the oth-
ers. Note that at significance level .01, MLRT and EIBD
have roughly equal power to detect the first-cousin al-
ternative, whereas at significance level .001 the power
of MLRT is higher. Since the normal approximation does
not hold for MLRT, we do not necessarily expect it to
follow a similar pattern to the other statistics across the
two plots. The results are similar to those in figure 2 if
the null of first cousin is tested against the alternative
of half-sib or avuncular (see table 4), or the null of avun-
cular is tested against the alternative of first cousin (re-
sults not shown). Table 4 also gives power for testing a
null of first cousin against the alternative of grand-PC
for significance levels .01 and .001. The ordering of the
five statistics in terms of their power is the same as above.

The three relationships half-sib, avuncular, and grand-
PC are similar in that they have the same probabilities
of IBD. However, the transition rate of the grand-PC
IBD process is only 1/2 that of half-sibs and 2/5 that of
avuncular. (In each case, we define the transition rate to
be the rate of transition to IBD value conditional1 � i
on current IBD value i for the stationary IBD process.)
The LRT and MLRT are the only ones among the five
tests considered that take into account the information



Figure 2 Power versus genome-screen resolution for the four test statistics with 1 million replications, microsatellite marker frequencies
.40, .20, .20, .05, .05, .05, and .05. A, Null relationship half-sib, alternative relationship first-cousin, significance level .01. B, Null relationship
half-sib, alternative relationship first-cousin, significance level .001.
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Table 4

Power of Tests Based on LLR, MLLR, EIBD, AIBS, and IBS, against
the Alternative of Half-Sib, Grand-PC, or Avuncular Relationship,
When Null Relationship Is First Cousin.

SIGNIFICANCE LEVEL,
MARKER TYPE (v),
AND TEST STATISTICa

POWER WHEN

ALTERNATIVE (TRUE)
RELATIONSHIP ISb

Half-Sib Grand-PC Avuncular

Significance level .01:
SNP (.01):

LRT 1.00 1.00 1.00
MLRT 1.00 1.00 1.00
EIBD .99 .97 .99
AIBS .97 .95 .98
IBS .97 .95 .97

Microsatellite (.07):
LRT .99 1.00 .99
MLRT .99 1.00 .99
EIBD .98 .96 .98
AIBS .96 .94 .97
IBS .94 .91 .94

COGA map (average .13):
LRT .95 .98 .95
MLRT .95 .97 .94
EIBD .92 .89 .93
AIBS .87 .85 .88
IBS .81 .79 .81

Microsatellite (.15)
LRT .93 .96 .92
MLRT .92 .95 .92
EIBD .90 .88 .91
AIBS .84 .82 .84
IBS .74 .73 .75

Microsatellite (.25):
LRT .77 .81 .76
MLRT .76 .80 .75
EIBD .75 .73 .75
AIBS .65 .64 .65
IBS .52 .52 .53

SNP (.07):
LRT .69 .75 .68
MLRT .69 .74 .67
EIBD .65 .64 .65
AIBS .45 .45 .45
IBS .42 .42 .42

Significance level .001:
SNP (.01):

LRT .99 1.00 .98
MLRT .98 .99 .98
EIBD .95 .91 .95
AIBS .89 .85 .89
IBS .88 .85 .89

Microsatellite (.07):
LRT .96 .99 .95
MLRT .96 .98 .95
EIBD .91 .87 .92
AIBS .86 .82 .87
IBS .79 .76 .79

COGA map (average .13):
LRT .82 .90 .81
MLRT .82 .88 .80
EIBD .75 .73 .76
AIBS .65 .63 .65

IBS .54 .54 .54
Microsatellite (.15):

LRT .77 .86 .75
MLRT .76 .84 .74
EIBD .71 .69 .72
AIBS .59 .58 .59
IBS .45 .46 .45

Microsatellite (.25):
LRT .49 .57 .48
MLRT .48 .56 .47
EIBD .47 .47 .47
AIBS .35 .35 .34
IBS .23 .24 .23

SNP (.07):
LRT .40 .48 .39
MLRT .39 .47 .37
EIBD .36 .37 .36
AIBS .19 .20 .18
IBS .18 .19 .18

a Microsatellite markers have allele frequencies .40, .20, .20, .05,
.05, .05, and .05, SNPs have allele frequencies .7 and .3, and markers
are equally spaced, with given recombination fraction v between ad-
jacent pairs. GAW 11 COGA map has average marker spacing of 13.6
cM, which would correspond to when the Kosambi map func-v ≈ .13
tion is used.

b Power is based on 106 simulated realizations.

in the data on the transition rate of the process. For each
of the statistics EIBD, AIBS, and IBS, its mean value
does not vary among the three relationships, although
its variance does vary. Thus, these statistics have almost
no power to distinguish among these three relationships.
The LRT and MLRT have some power to distinguish
among them based mainly on the different transition
rates of the IBD processes. However, table 5 shows that
the power of the LRT (which is always higher than that
of MLRT) is generally very low in these cases. Note that
the power is higher when one in the pair of relationships
(null or alternative) is grand-PC than when neither re-
lationship is grand-PC. This is explained by the fact that
the transition rate for the grand-PC IBD process is very
different from those for the avuncular and half-sib IBD
processes.

We find that for EIBD, AIBS, and IBS, when the null
relationship is first cousin, the grand-PC relationship
tends to be slightly more difficult to detect as an alter-
native than are half-sib and avuncular (table 4) and
grand-PC is more difficult to correctly reject as a null
than are half-sib and avuncular relationships (results not
shown). The fact that the transition rate is much smaller
for the grand-PC IBD process than for the half-sib and
avuncular IBD processes causes the variances of EIBD,
AIBS, and IBS to be higher under the grand-PC model
than under either the half-sib or avuncular model. This
explains the increased difficulty in detecting grand-PC
as an alternative or correctly rejecting it as a null for
those statistics. Given two relationship pairs, the power



1086 Am. J. Hum. Genet. 66:1076–1094, 2000

Table 5

Power of LRT to Distinguish Half-Sib, Grand-PC, and Avuncular
Relationships, at Significance Level .001

MARKER TYPE (v)
AND ALTERNATIVE

(TRUE) RELATIONSHIP

POWER OF LRT WHEN NULL

(FALSE) RELATIONSHIP ISa

Half-Sib Grand-PC Avuncular

SNP (.01):
Half-sib NA .47 .01
Grand-PC .40 NA .73
Avuncular .02 .78 NA

Microsatellite (.07):
Half-sib NA .23 .01
Grand-PC .20 NA .41
Avuncular .01 .47 NA

COGA map (average .13):
Half-sib NA .06 .03
Grand-PC .05 NA .10
Avuncular .00 .13 NA

Microsatellite (.15):
Half-sib NA .04 .00
Grand-PC .04 NA .07
Avuncular .00 .09 NA

Microsatellite (.25):
Half-sib NA .01 .00
Grand-PC .01 NA .02
Avuncular .00 .02 NA

SNP (.07):
Half-sib NA .01 .00
Grand-PC .01 NA .01
Avuncular .00 .02 NA

NOTE.—For details, see table 4.
a NA = not applicable.

Table 6

Power, at Significance Level .001,of Tests Based on LLR, MLLR
EIBD, AIBS, and IBS, against (A) the Alternative of Full Sib, When
Null Relationship Is Half-Sib, Grand-PC, Avuncular, or First Cousin,
and (B) the Alternative of Half-Sib, Grand-PC, Avuncular, or First
Cousin, When Null Relationship Is Full Sib

MARKER TYPE (v)
AND TEST STATISTIC

POWER OF TEST

Half-Sib Grand-PC Avuncular
First

Cousin

A. Alternative of Full Sib, When Null
Relationship Is Half-Sib, Grand-PC,

Avuncular, or First Cousin

Microsatellite (.25):
LRT 1.00 1.00 1.00 1.00
MLRT .99 .99 1.00 1.00
EIBD .92 .88 .93 1.00
AIBS 1.00 .99 1.00 1.00
IBS 1.00 .99 1.00 1.00

SNP (.07):
LRT 1.00 1.00 1.00 1.00
MLRT 1.00 1.00 1.00 1.00
EIBD .95 .92 .96 1.00
AIBS .99 .99 1.00 1.00
IBS .99 .99 1.00 1.00

B. Alternative of Half-Sib, Grand-PC,
Avuncular, or First Cousin, When

Null Relationship Is Full Sib

Microsatellite (.25):
LRT 1.00 1.00 1.00 1.00
MLRT 1.00 1.00 1.00 1.00
EIBD 1.00 1.00 1.00 1.00
AIBS 1.00 1.00 1.00 1.00
IBS 1.00 .99 1.00 1.00

SNP (.07):
LRT 1.00 1.00 1.00 1.00
MLRT 1.00 1.00 1.00 1.00
EIBD 1.00 1.00 1.00 1.00
AIBS 1.00 .99 1.00 1.00
IBS .99 .99 .99 1.00

NOTE.—For details, see table 4.

to distinguish between them depends on the choice of
the null relationship. For example, it is much easier to
distinguish grand-PC (alternative) from first-cousin
(null) than the other way around.

We find that the full sib relationship is relatively easy
to distinguish from the other relationships, either as a
null or as an alternative. Table 6A and B, respectively,
show power when full sib is either the null or the al-
ternative relationship, for significance level .001, for mi-
crosatellites with recombination fraction between ad-
jacent markers of .25 and for SNPs with recombination
fraction between adjacent markers of .07. For lower sig-
nificance levels or increased marker density, power is
nearly perfect for all methods when full sibs is either the
null or the alternative, so the results are not shown. Note
that when the alternative relationship is full sibs while
the null relationship has , EIBD performs worsep = 02

than the other statistics. This is because the conditional
expected number of alleles shared IBD can never be 11
in that case. Even so, the power of EIBD in this case is
very high, �88% for all cases simulated.

In all cases, the LRT is the most powerful of the five
methods. Note that interference is present in the simu-
lated data, whereas the likelihood ratio is calculated un-
der the assumption of no interference for the sake of

computational simplicity. Thus, it is not the true likeli-
hood-ratio test for the model used in the simulations,
although, in practice, we expect this to have a negligible
effect on power. Figure 2A and B and table 4 show that
the power achieved by MLRT and EIBD is close to that
of LRT, with MLRT usually having somewhat higher
power than EIBD. When the true alternative relationship
is not contained in the set of relationships consideredA
for the MLRT, the power of EIBD and that of MLRT
tend to be very close for the cases we have simulated
(results not shown), including double first cousin, sib-
lings from a first-cousin mating, and the relationship,
which we call half-sib plus first cousin, that is depicted
in figure 3, and which our analysis suggests may occur
in the GAW 11 COGA data set. EIBD has higher power
than both AIBS and IBS in all cases simulated except
when the alternative relationship is full sibs while the
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Table 7

Power of Suggested Strategy of Application of
MLRT to Those Pairs for Which at Least One
of EIBD and AIBS Has , Divided byp ! .2
Power of MLRT, for Significance Level .001 in
Both Cases

Null
Relationship

True
Relationship

Power Relative
to MLRT

First cousin Half-sib 1.000
First cousin Grand-PC 1.000
First cousin Avuncular .999
Half-sib First cousin 1.000
Grand-PC First cousin .999
Avuncular First cousin 1.000
Sibling All others 1.000
All others Sibling 1.000

NOTE.—The number of simulated realiza-
tions is 106. The GAW 11 COGA map is used,
with average intermarker distance of 13.6 cM.

Figure 3 Half-sib plus first-cousin pedigree: individuals 1 and 2
are half-sibs through their father and first cousins through their mother.

null relationship has . In that case, however, allp = 02

five statistics have very high power. The power of AIBS
is always at least as high as, and sometimes substantially
higher than, IBS, as shown in figure 2 and tables 4 and
6.

The type of map used, SNP map, microsatellite map,
or GAW 11 COGA map, did not have a substantial
impact on the power comparisons among the statistics.
The power results for SNPs with allele frequencies .7
and .3 are similar to results for microsatellites at a lower
density. Using SNPs at recombination fraction .01 gen-
erally gives a test with slightly more power than that
using microsatellites at recombination fraction .07,
whereas using SNPs at recombination fraction .07 gen-
erally gives a test with slightly less power than that using
microsatellites at recombination fraction .25. When
SNPs with allele frequencies .5 and .5 are used, power
is slightly higher, but the increase is fairly small (results
not shown). The results for the GAW 11 COGA map,
which has average intermarker recombination fraction
of .13 and different allele frequency distributions across
markers, were quite similar to those for the idealized
microsatellite map with intermarker recombination frac-
tion of .15.

In practice, for a data set in which there may be
thousands of pairwise relationships to consider, we have
suggested a strategy of preliminary screening with EIBD
and AIBS, using a on at least one of these testsp � .2
as a prerequisite for applying the MLRT. The rationale
is that simulation to assess significance for the MLRT
is computationally intensive, so could be reserved for
those pairs that are most likely to yield an unusual result.
We find that significance levels, obtained by simulation,
for this two-step procedure are not detectably different
from significance levels, obtained by simulation, for
MLRT, even when the number of simulations used is

106; that is, under the null relationship, the chance that
a relative pair will have for both AIBS and EIBDp � .2
conditional on having for MLRT is so smallp ! .001
that the resulting difference in simulated significance lev-
els for the two procedures (straight MLRT vs. screening
followed by MLRT) is smaller than the amount of
chance variation in simulated significance level for either
procedure, even when the number of realizations is 106.
Table 7 shows that virtually no power is lost by use of
this strategy compared with use of the MLRT on all
pairs, at least for the relationships we have considered.

To use the MLRT for a wider range of pairwise re-
lationships, one would need to construct an augmented
Markov chain for each relationship considered as either
a null or an alternative. Another approach is the Markov
approximation suggested in the Methods section. For
the cases of avuncular and first-cousin relationships, we
have performed simulations to compare the likelihood
calculated by use of the augmented Markov chain (cor-
rect likelihood) with the approximate likelihood ob-
tained by use of the Markov approximation. Our sim-
ulations consisted of 100,000 replicates of the given
relationship, with genotypes simulated on the basis of
the GAW 11 COGA map. For the avuncular relation-
ship, out of 100,000 simulations, the maximum relative
error of the likelihood for genome screen data when the
Markov approximation was used was .000124. For the
first-cousin relationship, out of 100,000 simulations, the
maximum relative error of the likelihood for genome
screen data when the Markov approximation was used
was .000168. When the Markov approximation was
used to calculate the likelihoods for the LRT, with first
cousin as the alternative and avuncular as the null, the
power was very close to that when the correct likelihood
was used, similarly with avuncular as the null and first
cousin as the alternative (results not shown). This sug-
gests that, at least for these two relationships, the Mar-
kov approximation to the likelihood is adequate.

We performed simulations to assess the estimation of
relationships, using the method described in Methods
above. The results are shown in table 8. We give the
mean and standard deviation of the estimated IBD shar-
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Table 8

Relationship Estimation, Where pi Is the Probability of i Alleles
Shared IBD, for , 1, 2i = 0

MARKER TYPE (v)
AND RELATIONSHIPa

MEAN (SD) OF ESTIMATED

IBD SHARING PROBABILITYb

p0 p1 p2

SNP (.01):
Full sib .251 (.045) .499 (.050) .250 (.042)
Half-sib .504 (.057) .488 (.060) .008 (.011)
Grand-PC .505 (.068) .488 (.070) .008 (.011)
Avuncular .505 (.055) .488 (.057) .007 (.011)
First cousin .755 (.051) .238 (.054) .007 (.010)

Microsatellite (.07):
Full sib .249 (.047) .500 (.052) .251 (.044)
Half-sib .502 (.060) .490 (.061) .007 (.011)
Grand-PC .502 (.070) .491 (.071) .007 (.011)
Avuncular .503 (.057) .490 (.058) .007 (.011)
First cousin .752 (.054) .242 (.056) .006 (.009)

COGA map (average .13):
Full sib .249 (.053) .501 (.062) .250 (.048)
Half-sib .503 (.068) .487 (.071) .009 (.014)
Grand-PC .504 (.077) .487 (.079) .009 (.014)
Avuncular .503 (.066) .487 (.069) .009 (.014)
First cousin .754 (.065) .238 (.067) .008 (.012)

Microsatellite (.15):
Full sib .250 (.055) .500 (.064) .250 (.048)
Half-sib .503 (.070) .486 (.073) .010 (.016)
Grand-PC .503 (.079) .486 (.081) .010 (.016)
Avuncular .504 (.068) .485 (.071) .011 (.016)
First cousin .756 (.069) .235 (.071) .009 (.014)

Microsatellite (.25):
Full sib .250 (.065) .500 (.080) .251 (.055)
Half-sib .503 (.084) .483 (.088) .013 (.021)
Grand-PC .504 (.090) .482 (.094) .014 (.021)
Avuncular .505 (.083) .481 (.087) .014 (.021)
First cousin .758 (.082) .231 (.086) .012 (.018)

SNP (.07):
Full sib .250 (.074) .500 (.097) .250 (.059)
Half-sib .510 (.093) .470 (.102) .019 (.029)
Grand-PC .513 (.101) .468 (.110) .020 (.029)
Avuncular .513 (.093) .468 (.102) .019 (.028)
First cousin .766 (.094) .215 (.103) .019 (.027)

a Microsatellite markers have allele frequencies .40, .20, .20, .05,
.05, .05, and .05; SNPs have allele frequencies .7 and .3, and markers
are equally spaced, with given recombination fraction v between ad-
jacent pairs.

b Each mean and SD is based on 104 simulated realizations.

ing probabilities when the data are simulated under var-
ious relationships, where the number of replicates in
each simulation is 10,000. For the relationships with

, there is a slight bias in the estimates, amountingp = 02

to no more than ∼5%. This bias is expected because one
can estimate p2 only at or above its actual value, never
below, in those cases. For microsatellite markers at re-
combination fraction .07, the bias is quite small. The
standard deviations of the estimates tend to be rather
large at the marker resolutions considered. Thus, the
procedure may give only a rough idea of the true rela-
tionship. For instance, double first cousins has p =2

, , , and quadruple half first cousins1/16 p = 3/8 p = 9/161 2

has , , . With the level ofp = 1/32 p = 7/16 p = 17/322 1 0

standard deviation seen in the simulations, such rela-
tionships may be difficult to distinguish from each other
and from half-sib/grand-PC/avuncular ( , ,p = 0 p = 1/22 1

), by use of the estimation procedure. We ex-p = 1/20

plored the use of the maximized value of
as a test statistic to detect misspecifiedn� log [L(G ; p)]m=1 m

relationships, but its power was lower than AIBS, per-
haps because there is not enough information in these
data to accurately estimate relationships by this method.
Still, this quick approximate method can be used to sug-
gest a class of relationships whose likelihoods could then
be compared.

Application to GAW 11 COGA Data

The GAW 11 COGA data were collected for the pur-
pose of mapping genes for susceptibility to alcohol de-
pendence and related phenotypes (Begleiter et al. 1999).
The data consist of 105 pedigrees, generally 3- or 4-
generation, with 1,214 individuals, 992 of whom are
genotyped. The genome screen includes 296 markers
with average heterozygosity of .73 and average inter-
marker distance of 13.6 cM. In our analysis, we consider
only the autosomal markers, of which there are 285 with
average intermarker distance of 13.5 cM. Allele fre-
quencies, estimated with the USER M13 program
(Boehnke 1991), were distributed with the data, as were
marker order and distances estimated with the CRIMAP
program (Lander and Green 1987). In the present anal-
ysis for detection of misspecified relationships, we con-
sider only five null relationships: full sib, half sib, grand-
PC, avuncular and first cousin. Among the typed
individuals, we use the pedigree information to identify
2,810 such relative pairs. The majority (2,625 pairs)
have 1200 typed markers in common. The minimum
number of shared typed markers for any of the 2,810
pairs is 25.

For each pair, performance of the MLRT, including
100,000 simulated realizations to assess significance at
the .001 level, takes ∼4 min on a Sun Ultra II with 360-
MHz processor and .5 GB RAM. Thus, for 2,810 pairs,
the approximate time to perform the MLRT would be
7.8 days. We instead prescreen, using AIBS and EIBD,
performing the MLRT only for those pairs for which at
least one of the AIBS and EIBD-based tests has a p !

. This results in a time of ∼2.6 d to complete the cal-.2
culations, a savings of ∼ , or 15 days of CPU time.2

3

For each of the 2,810 pairs, we calculate EIBD and
AIBS and perform the corresponding hypothesis tests for
relationship misspecification. We identify 949 of the
2,810 pairs that have for either the EIBD or AIBSp ! .2
test. For each of these 949 pairs, we calculate the MLLR
statistic where the set of alternative relationships , overA
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which the statistic is maximized, consists of full sib, half
sib, grand-PC, avuncular, first cousin, and unrelated. To
assess significance of deviation from the null relation-
ship, for a particular pair among the 949, we simulate
100,000 realizations of the genotype data for that pair
under the null relationship, with the same markers typed
as in the data for that pair. For each realization, we can
perform the two-step procedure of first screening with
EIBD or AIBS and then calculating MLLR for those pairs
having for EIBD or AIBS. In this data set, we findp ! .2
that the significance level obtained this way is virtually
indistinguishable from that obtained for MLRT alone.
Among the 949 pairs, there are 26 that are significant
at level .001, a level at which we would expect approx-
imately three false positives if all tests were independent,
and these 26 pairs occur in 11 pedigrees.

In pedigree data, when one individual has, say, mis-
specified paternity, or if there is a switched sample, this
may be expected to create multiple incorrect pairwise
relationships, some of which may be observable, de-
pending on how many close relatives have genotype data
available. When a particular pair is observed to have
significant deviation from its null relationship, the pat-
tern among the other relative pairs in the pedigree can
often confirm and point to a likely explanation for the
finding. We consider some examples in the GAW 11
COGA data. For instance, there is a sibship of size 4 in
which one particular sib has significant relationship mis-
fit with each of his three putative sibs. There is a similar
sibship of size 3 in which a particular sib has relationship
misfit with each of his two putative sibs. There is another
sibship of size 3 in which this occurs and furthermore,
the particular sib who shows misfit also shows significant
relationship misfit with each of his three nieces and neph-
ews. For the first and third of these families, there are
no genotype data available on either of the parents,
whereas for the second family, there are genotype data
available on the mother only. In the second family, the
possibility that the individual is a half-sib to each of his
other putative sibs is compatible with the data. For the
families with no parental genotype data available, for
each pairing of the problematic individual with his sibs,
the relationship maximizing the likelihood, among those
in , is first cousin. In these two cases, the relationshipA
of half-sibs is not compatible with the data, nor is the
relationship of unrelated. There is an additional family
containing a sibship of size 4 in which one sib has sig-
nificant relationship misspecification with two of his
three putative sibs, with father’s genotype missing. In
this case, the possibility that the one sib is actually a
half-sib to all three of his putative siblings is compatible
with the data. There is a sib pair that shows significant
relationship misspecification, where the father is typed,
but not the mother, and there are no other siblings. Nei-
ther sib shows any relationship misfit with any of his

avuncular or first-cousin relatives. Among the relation-
ships in , the one that fits best for this pair is half-sib;A
however, for rejection of half-sib as a null, , andp = .04
the estimated values of p0, p1, and p2 suggest the pos-
sibility of a closer relationship such as half-sib plus first
cousin as shown in figure 3. There is a sibship of size 9
among which there are four pairs showing significant
misfit. These pairs appear to be much more closely re-
lated than sibs, but are clearly not MZ twins, suggesting
an inbred relationship. In another family, there is a sib
pair with significant deviation that also appears to be
much more closely related than sibs, but less than MZ
twins, again suggesting inbreeding.

In some cases, when a particular pair is observed to
have significant deviation from its null relationship, the
pattern among other relatives does not confirm this. For
instance, there is a family containing a sibship of size 4
in which one sib has significant relationship misspeci-
fication with two of this three putative sibs, with father’s
genotype missing. In this case, the possibility that the
one sib is a half-sib to each of his three putative sibs is
strongly rejected by the data, and it is difficult to come
up with a consistent explanation for the results. The one
sib appears to be a half-sib to two of the three putative
sibs, and a full sib to the other, but the remaining three
all appear to be full sibs, an impossibility. In another
family, there is a cousin pair showing significant rela-
tionship misspecification. Both cousins’ parents are
typed, and both have several typed siblings, all with data
at 1170 markers, but there are no other significant pairs.
With so many individuals typed, Mendelian errors
would arise under most of the possible alternative sce-
narios. The GAW 11 COGA data have already been
cleaned of Mendelian errors. One might presume that if
the level of Mendelian errors had been above that ex-
pected from genotyping error, then the problematic in-
dividuals’ genotypes would have been removed from the
data set at that point. However, one should ideally have
full information on the Mendelian errors detected in
order to better assess relationship misspecification.
Given that there are no other significant pairs in the
pedigree, and under the assumption that most relatives
are typed and none show excessive Mendelian errors,
then it is reasonable to speculate that such a finding may
be a false positive. There are two other similar cases,
one involving an uncle-niece pair and one involving a
grand-PC pair.

Perhaps the most interesting cases, from the point of
view of the methods developed here, are those in which
the apparently misspecified relationships could not have
been detected based only on analysis of sibs and half-
sibs, but require consideration of other relationships
such as avuncular and first cousin. Consider the family
shown in figure 4. Here we have removed extraneous
individuals from the pedigree and changed the sexes of



1090 Am. J. Hum. Genet. 66:1076–1094, 2000

Figure 4 A pedigree from the GAW 11 COGA data set, with
some extraneous individuals removed and sexes of some individuals
changed. The starred individuals are untyped, and all other individuals
are typed for �250 markers. Arrows indicate individuals discussed in
the text.

some individuals to provide an extra level of confiden-
tiality for the family. In the pedigree, individuals 1, 2,
3, 5, 9, 10, 12, and 16 are untyped, whereas all other
individuals are typed for �250 markers. In this pedigree,
significant relationship misfit was detected for the cousin
pair 18 and 14 and the cousin pair 18 and 15. For all
four testing methods, EIBD, AIBS, IBS, and MLRT,

for rejection of the first-cousin relationship for�5p ! 10
both of these pairs. The value of (p0, p1, p2) for the first-
cousin relationship is (.75, .25, 0), but the estimated
values for these two pairs are (.28, .56, .16) and (.27,
.57, .16), respectively, which is between half and full
sibs. There is no excess sharing between individuals 4
and 11, who are the mothers of the cousins. There is no
misfit between individual 18 and his half-sib 19, or be-
tween individuals 14, 15, or 18 and their avuncular rel-
atives. One possible explanation consistent with the data
is that individuals 5 and 10 are the same person. In that
case, individuals 18 and 14 would have the relationship
shown in figure 3, as would individuals 18 and 15,
whereas all other relationships in figure 4 would be pre-
served. In another case, which would also not be de-
tected by use of full or half sibs, a pair of putative first
cousins shows significant relationship misfit, with the
relationship of double first cousins actually being con-
sistent with the data. Neither father is typed, and the
cousin relationship is through the mothers.

Discussion

In order to extend the likelihood calculations of Göring
and Ott (1997) and Boehnke and Cox (1997) to more
general pairwise relationships for which IBD status is no
longer a Markov chain, we define an augmented Markov
chain that contains the information of IBD status. A
generally applicable way to define such an augmented
Markov chain is to consider the process whose state
space is the equivalence relation on inheritance vectors

obtained by identifying inheritance vectors that differ
only by interchanges of maternal and paternal haplo-
types within founders, although this will not give the
most parsimonious chain. For the avuncular and first-
cousin cases, we give augmented Markov chains con-
taining the minimal amount of information needed be-
yond IBD status in order to make the process Markov.
Similar chains for some additional relationships are
given by Donnelly (1983). Using these augmented Mar-
kov chains as the basis of our likelihood calculations,
we describe and implement a MLRT, for which signif-
icance is assessed by simulation. Extensions of the like-
lihood calculation that take into account interference
and inbreeding are described in Appendices A and B,
respectively.

We extend the IBS-based test of Ehm and Wagner
(1998) to more general relative pairs. The implemen-
tation of the IBS-based test is much simpler computa-
tionally than that of MLRT, but the IBS-based test loses
power by not taking into account chance sharing. The
tests based on EIBD and AIBS are a compromise be-
tween the two, with higher power than IBS, but with
the desirable features of the IBS-based test, namely com-
putational simplicity and no need to specify a particular
alternative relationship. In simulations, EIBD has power
close to that of the MLRT and has higher power than
both the AIBS and IBS-based tests, except in the case
when the null relationship has and the alternativep = 02

is full sib. However, the power of EIBD is still quite
high in this case, generally over 90% in our simulations.
The statistic AIBS outperforms IBS in every simulation,
but in most simulations does not perform as well as
EIBD.

Among the four statistics considered, MLLR, EIBD,
AIBS, and IBS, the test based on MLLR has the highest
power to detect misspecified relationships. However, al-
though the tests based on EIBD, AIBS, and IBS do not
require specification of any alternative relationship, the
MLRT requires one to construct augmented Markov
chains for a number of alternative relationships as well
as for the null relationship. Furthermore, assessment of
significance for the MLRT requires computationally in-
tensive simulation, whereas a normal approximation
can be used for EIBD, AIBS, and IBS. When a large
number of relative pairs are to be considered, as in the
GAW 11 COGA data, we recommend preliminary
screening using EIBD and AIBS, with MLRT applied
only to pairs having for at least one of EIBD andp � .2
AIBS. Our results show that the significance level is
hardly detectably changed, and the reduction in power
is minuscule. In the GAW 11 COGA data set, this re-
sulted in the MLRT being performed for 1/3 of the pairs
considered, which took ∼2.6 d of computer time on a
SUN Ultra II with 360-MHz processor and .5 GB RAM,
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instead of the 7.8 days it would be expected to take to
perform MLRT for all pairs.

To assess significance for the EIBD, AIBS, or IBS-
based tests using the normal approximation, the null
mean and variance must be computed. In all three cases,
this requires calculation of the two-locus null condi-
tional IBD probabilities forP (D = i2FD = i1)O m2 m1

in addition to the single-locus null IBDi1, i2 � {0, 1, 2}
probabilities p0, p1, and p2 and allele frequencies at each
locus. In particular, map information in the form of all
pairwise recombination fractions between markers and
allele frequencies at all loci are used to assess signifi-
cance. For the MLRT, recombination fractions between
all pairs of adjacent markers and allele frequencies are
used both to compute the statistic and for simulation
to assess significance.

In most of our simulations, we have assumed that
allele frequencies were known, whereas in practice, one
would generally need to estimate these from the data.
It is of interest to know how robust the various tests
are to misspecification of allele frequencies. Allele fre-
quencies are involved in calculation of all statistics be-
sides IBS, but even for that statistic, allele frequencies
are needed in order to assess significance. Our prelim-
inary simulation studies suggest that MLRT and EIBD
are comparably robust to misspecified allele frequencies,
with AIBS and IBS apparently somewhat less robust
(results not shown).

Another aspect of the simulations that is somewhat
unrealistic is that there is no genotyping error. With
genome screen data, a low rate of genotyping error
would not be expected to have serious consequences for
relationship error detection by use of the MLRT, except
in the cases of parent-offspring and MZ twin relation-
ships, in which genotyping errors might result in an
outcome that has likelihood zero under that relation-
ship. In contrast, the other statistics, EIBD, AIBS, and
IBS would be expected to be more robust. In the cases
of parent-offspring and MZ twin relationships, the like-
lihood approach could be slightly modified to include
a low rate of random genotyping error as suggested by
Broman and Weber (1998). The GAW 11 COGA data
set was apparently already cleaned of Mendelian errors
before being distributed. Ideally, detection of misspe-
cified relationships and identification of Mendelian er-
rors should be performed simultaneously. Although
some Mendelian errors will occur because of genotyping
errors, their presence or absence and overall level can
provide important clues to the detection of relationship
errors and to the understanding of their likely cause.

One way to make the application of MLRT feasible
for a wider class of relationships is to use the Markov
approximation to the likelihood proposed in the Meth-
ods section. In that case, rather than construct an aug-
mented Markov chain for each null and alternative re-

lationship considered, one need only calculate the
one-step conditional IBD probabilities Pr (D =m2

, where is the number of alleles shared IBDjFD = i) Dm1 m

by a given pair at locus m. Our results indicate that at
least for the avuncular and first-cousin relationships,
this approximation is adequate for relationship testing.

In the GAW 11 COGA data set, a number of pairwise
relationships showing significant misfit were detected,
including some that could not have been detected had
only full and half-sibs been considered. To reduce the
occurrence of false positive detection of relationship er-
ror among the 2,810 relative pairs in the data set, we
set the significance level to .001. Our simulations in-
dicate that power of the MLRT is still quite high at this
significance level. When an apparent error is detected,
one may be able to distinguish a true relationship error
from chance rejection of the null by consideration of
the pattern of results among multiple pairs from the
same pedigree. In the case of a true error, there may be
a pattern of results among close relatives all pointing
to a particular alternative explanation for the data. Ide-
ally, the methods presented here should be extended to
simultaneous inference on a number of relatives. For
instance, an entire sibship could be considered simul-
taneously in a single likelihood analysis, rather than
separate consideration of relative pairs.

When the null relationship is rejected by a hypothesis
test, it is natural to consider the problem of estimation
of the correct relationship. We describe a simple ap-
proach to estimation of p0, p1, and p2, the null proba-
bilities of IBD. The estimates are rough, but can be used
to suggest candidate relationships whose likelihoods
could then be calculated and compared.

For the test statistics EIBD, AIBS, and IBS, one could
consider trying to increase power by weighting markers
differently depending on their location in the genome,
giving isolated markers more weight than those in
densely mapped regions, because correlation between
markers is a decreasing function of distance. Our pre-
liminary work on optimal weights indicates that, at least
in the complete data case, the increase in power tends
to be small (results not shown).
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Appendix A

More Detailed Explanation of the Violation of the Mar-
kov Property by the Avuncular and First-Cousin IBD
Processes

To see that the avuncular and first-cousin IBD pro-
cesses are not Markov, it would suffice to provide a
counterexample in each case. However, in order to un-
derstand the augmented Markov processes we introduce,
it is necessary to understand the nature of the violation
of the Markov property, which we now describe in more
detail.

First consider the avuncular case. Suppose the geno-
types at locus A are as given in figure 1A, where the
maternally inherited allele of individual 4, ai, is either a3

or a4. Here, the avuncular pair of individuals 3 and 6
share no alleles IBD at locus A. Consider a nearby locus
B to the right of locus A, linked to A. We are interested
the distribution of the number of alleles shared IBD by
individuals 3 and 6 at locus B conditional on the ge-
notype information at locus A given in figure 1A. We
make the relatively weak assumption that the crossover
process is a regular, stationary point process, with chi-
asma interference permitted, but with no chromatid in-
terference, i.e. the choices of chromatid strands for dif-
ferent crossovers are independent and uniform. In the
example shown in figure 1A, if ai is a3, i.e. if the allele
not transmitted from 4 to 6 is shared IBD between in-
dividuals 3 and 4, then IBD sharing of 1 for the avun-
cular pair at locus B may be achieved by a single cross-
over in any one of three meioses: the meioses involving
transmission of genetic material from individual 1 to
individual 3, 1 to 4, or 4 to 6. If ai is a4, i.e. if the allele
not transmitted from 4 to 6 is not shared IBD between
individuals 3 and 4, then IBD sharing of 1 for the avun-
cular pair at locus B may be achieved by a single cross-
over in either of two meioses: 1 to 3, or 1 to 4. Thus,
the instantaneous rate of transition at A from IBD 0 to
IBD 1 for the avuncular pair is 3 if and 2 ifa = ai 3

. This suggests that in the example shown in figurea = ai 4

1A, if we condition on all the allele information at locus
A, then the distribution of the number of alleles shared
IBD by the avuncular pair at B depends on ai, i.e. it
depends on whether the A allele not transmitted from
individual 4 to individual 6 is shared IBD between in-
dividuals 3 and 4. In fact, letting DA and DB be the
number of alleles shared IBD by individuals 3 and 6 at
loci A and B, respectively, letting SA denote the event
that the A allele not transmitted from individual 4 to
individual 6 is shared IBD between individuals 3 and 4,
and letting denote the complementary event to SA, wecSA

have that cP(D = 1FD = j, S ) 1 P(D = 1FD = j, S )B A A B A A

when A and B are linked. This inequality can be deduced

from the transition probabilities given in table 2A, in
light of the fact that for2 22v(1 � v) ! v � (1 � v) 0 �

. Immediate consequences of this inequality are (i)v ! .5
, and (ii)P(D = 1FD = j, S ) 1 P(D = 1FD = j) P(D =B A A B A B

. From (ii), we havec0FD = j, S ) ! P(D = 0FD = j, S )A A B A A

(iii) . Using (i) andP(D = 0FD = j) 1 P(D = 0FD = j, S )B A B A A

(iii), we have that

P(S FD = 1, D = j) = P(S , D = 1FD = j)/A B A A B A

P(D = 1FD = j) = P(D = 1FD = j, S )B A B A A

#P(S FD = j)/P(D = 1FD = j)A A B A

1 P(D = 0FD = j,S )P(S FD = j)/B A A A A

P(D = 0FD = j) = P(S FD = 0, D = j) ,B A A B A

which implies (iv) .P(S FD = j, D = 1) 1 P(S FD = j)A A B A A

Thus, conditional on the number of alleles shared IBD
by the avuncular pair at locus A, the probability that SA

occurs is increased if the IBD sharing by the avuncular
pair is 1 at a nearby locus B. Suppose B is to the right
of A, and let C be another nearby locus to the left of
A. Then, using (iv) and the fact that is Markov,(S, D)
we have that

P(D = 1FD = j, D = 1)C A B

= P(D = 1FD = j, S ,D = 1)P(S FD = j, D = 1)C A A B A A B

c c�P(D = 1FD = j, S , D = 1)P(S FD = j, D = 1)C A A B A A B

= P(D = 1FD = j, S )P(S FD = j, D = 1)C A A A A B

c�P(D = 1FD = j, S )[1 � P(S FD = j, D = 1)]C A A A A B

c= P(D = 1FD = j, S ) � [P(D = 1FD = j, S )C A A C A A

c�P(D = 1FD = j,S )]P(S FD = j,D = 1)C A A A A B

c1 P(D = 1FD = j,S ) � [P(D = 1FD = j,S )C A A C A A

c�P(D = 1FD = j,S )]P(S FD = j)C A A A A

= P(D = 1FD = j) .C A

This shows inequality 1, in violation of the Markov
property. The first-cousin case follows by use of a gen-
eralization of this argument.

Appendix B

Calculation of the Likelihood Under the x2 Interference
Model

The chi-square interference model can be viewed as a
hidden Markov model. By applying the Baum algorithm,
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Figure C1 Graphic representation of the nine IBD states of Jac-
quard (1974). An edge is present between a given pair of nodes if and
only if they are identical by descent.

the likelihood can be obtained. To see this, note that for
the chi-square model with parameter m, the crossover
process on four strands can be obtained by first con-
structing a Poisson process with rate in terms2(m � 1)
of genetic distance. Start at one end of the chromosome
and label the first point of the Poisson process X1 where
X1 is chosen uniformly at random from among the in-
tegers . For all , label the ith point{0, 1, 2, ) , m} i 1 1
of the process (counting in order from the end of the
chromosome) (mod ). Then everyX = X � i m � 1i 1

point with label 0 is a crossover point for the four-strand
process. To obtain the single-strand crossover process,
independently keep each point of the four-strand cross-
over process with chance 1/2 or eliminate it with chance
1/2. Consider a single strand inherited by an offspring
from its parent. For a given chromosomal location t,
define , where forZ(t) = [X(t), Y(t)] X(t) = X C � t !i i

, Ci being the ith point of the original PoissonCi�1

( ) process, and if the offspring inherited2(m � 1) Y(t) = 1
the parent’s paternal DNA and 0 if the offspring inher-
ited the parent’s maternal DNA at location t. Then

is a Markov process with P[Next stateZ(t) = [X(t), Y(t)]
is Current state is , where(x2, y2)F (x1, y1)] = P(x1,y1), (x2,y2)

for , ,P = 1 i = 0, 1, ) , m � 1 j = 0, 1 P =(i, j), (i�1, j) (m, j), (0,k)

for , , and all other entries are 0. The1/2 j = 0, 1 k = 0, 1
leaving rate for each state is . The observed data2(m � 1)
give partial information on only. Thus, the MarkovY(t)
chain is hidden. Now consider a pairZ(t) = [X(t), Y(t)]
of individuals in a pedigree. Define such a hidden Mar-
kov chain for each meiosis in the pedigree, and consider
the product Markov chain [Z (t),Z (t),...,Z (t)] =1 2 n

where[X (t), Y (t), X (t), Y (t), ..., X (t), Y (t)], Z (t) =1 1 2 2 n n i

is the Markov chain for the ith meiosis in[X (t), Y (t)]i i

the pedigree, and there are n meioses in total. Since the
meioses are independent, the transition matrix is the n-
fold Kronecker product of the transition matrix for a
single meiosis. If genotype data for the pair of individuals
is observed, then in principle the Baum algorithm can
be applied to the product Markov chain to calculate the
likelihood. As in Kruglyak et al. (1996), a reduction in
dimensionality could be achieved by identifying states
that differ by one or more interchanges of founders’
paternally and maternally inherited haplotypes.

Appendix C

Inbred Relative Pair

In the case of an inbred relative pair, instead of three
IBD states (0, 1, or 2 alleles shared IBD), there are now
nine IBD states (Jacquard 1974). Let the (unordered)
genotype of individual 1 be and let the (unor-(G , G )1 2

dered) genotype of individual 2 be . Jacquard(G , G )3 4

(1974) depicts each of the nine IBD states by a graph

with four nodes, each representing one of G1, G2, G3,
G4, with an edge present between Gi and Gj if and only
if Gi and Gj are IBD. See figure C1. States S7, S8, and S9

correspond to outbred states of 2, 1, and 0 alleles shared
IBD, respectively. The other six IBD states involve in-
breeding in one or both individuals. Thompson (1975)
gives the distribution of genotype given IBD state for an
outbred relative pair, which is needed in order to use
each of the four testing methods described in the current
work. However, this is not sufficient to determine the
distribution of genotype given IBD state for inbred rel-
ative pairs. The relevant distributions for inbred relative
pairs appear in Jacquard (1974). In principle, an aug-
mented Markov chain could be derived for an inbred
relative pair, for instance the chain {A�} described in
Methods above could be used. Then the likelihood of
the data could be computed by use of the distribution
of genotype given IBD state that appears in Jacquard
(1974). This would allow construction of a likelihood-
ratio test for an inbred relative pair. In order to extend
the definition of EIBD to inbreds, there is more than one
reasonable approach. One could define the of number
of alleles shared IBD for inbred relative pairs by defining
states to have 4, 0, 2, 0, 2, 0, 2, 1, and 0S , S , ) , S1 2 9

alleles shared IBD, respectively. Alternatively, one might
prefer to define states to have 2, 0, 1, 0,S , S , ) , S1 2 9

1, 0, 2, 1, and 0 alleles shared IBD, respectively, as for
outbreds. To extend the definition of IBS to inbreds, one
could think of 9 IBS states analogous to the nine IBD
states. Again, to apply the IBS score statistic to inbreds,
one could define the number of alleles shared IBS for
inbred relative pairs by defining IBS states

to have 4, 0, 2, 0, 2, 0, 2, 1, and 0 allelesS , S , ) , S1 2 9

shared IBS, respectively. However, if the level of inbreed-
ing is low, one may have more power by defining IBS
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states to have 2, 0, 1, 0, 1, 0, 2, 1, and 0S , S , ) , S1 2 9

alleles shared IBS, respectively, as for outbreds.
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